E-Mobility Behavior Analysis

(English below)

Analyse E-Mobilitätsverhalten (#5)

Ziel:

Antworten auf Fragen bezüglich Mobilitäts- und Ladeverhalten in der neuen Ära der Elektromobilität.

Idee:

Öffentliche und historische Daten analysieren, um Klarheit bezüglich des Themas Elektroautos zu schaffen und Fragen beantworten, wie: - Wie und wann bewegen sich Menschen heute? - Wie, wann und wo laden Elektroautofahrer ihre Autos? - Wie vergleicht sich eine öffentliche mit einer privaten Ladestation bezüglich Nutzung, Nutzungszeit, Nutzungsdauer usw.? - …?

Warum?

Die heutige Situation der Elektromobilität verstehen, so dass man sich die Zukunft vorstellen kann und den benötigten Infrastrukturausbau (Verteilnetz, private Ladeinfrastruktur zu Hause) planen kann.

Daten:

  • Anonymisierte Profile von privaten Ladestationen in Mehrfamilienhäusern
  • Historische Daten von öffentlichen Ladestationen aus ich-tanke-strom.ch (10GB Daten Feb. - Aug. 2020)
  • Öffentliche Daten aus anderen Quellen

E-Mobility behavior analysis

Goal:

Find answers to questions regarding mobility and charging behavior in the new era of electric mobility.

Idea:

Analyze open and historical data to get a clear understanding of the situation regarding electric cars by answering questions like the following: - How and when do people move? - How, when and where do people charge their electric cars? - How does a public charging station compare to a private one in terms of utilization, time of use etc.? - …?

Big Picture:

Understand the present situation regarding electric mobility in order to be able to imagine how the future will look like and plan the infrastructure development needed (electrical distribution grid, charging infrastructure at home) accordingly.

Data:

  • Anonymized profiles of private charging stations in multi-family homes
  • Historical data of public charging stations from ich-tanke-strom.ch (10GB of data from Feb. to Aug. 2020)
  • Open data from other sources

28.08.2020 13:24


28.08.2020 17:34 mockup for our emobility behaviour dashboard done.


29.08.2020 13:11 presentation & live demo of our amazing dashboard

Energy Hackdays 2020 Group 05 e-mobility behavior analysis

Erica Lastufka, physics @ www.fhnw.ch | Florence Meier, Full Stack Developmant (focus on frontend) | Benedikt Ramsauer, Data Scientist @ www.swiss-sdi.ch | Xavier Bays, Data Scientist @ www.swiss-sdi.ch | Tim Breitenbach, Analytics & Data Architect @ www.axpo.ch | Pradip Ravichandran, Computer Science @ www.fhnw.ch | Thilo Weber, Data Scientist @ www.geoimpact.ch | David Suter, Sustainable Energy Specialist @ www.geoimpact.ch

Dashboard Sreenshots

sreenshot1

sreenshot2

sreenshot3

sreenshot4

sreenshot5

sreenshot6

findings

public ev charging station

  • Typology of municipalities is an important feature for occupied ratio
  • highest occupied ratio in big centers and peri-urban rural communes
  • no correlation between population density and occupied ratio
  • different patterns on weekdays and weekends

private ev charging station

Different charging patterns of private customers: - Charging needs - Hours of charging - Week days of charging

This provide good hints for a further automated customer segmentation.

comparison of privat & public charging behavior

  • different time-profile on weekdays and weekend in public, but not in private

possible next steps

public ev charging station

  • occupation forecast for every charging station (hourly based day profile as a new feature for the website www.ich-tanke-strom.ch ) --> for the customers
  • clustering with more location-based data (socio-economic, roads, traffic etc.), understanding of different charging patterns --> for the provider
  • compare clusters of charging behavior with pv potential and production profiles, possibility of own consumption of charging stations --> for the grid

private ev charging station

  • automated customer segmentation based on linked information (building data, socio-economoic data, location) --> for the provider
  • cost estimation tool for customer --> for the customer
  • prediction of behavior changes for the load-curve --> for the grid

faced challenges

  • parsing and structuring provided raw data --> long running tasks
  • handling data errors and missing data

things to do

  • run everything on database server
  • productionalize frontend to shoot queries onto database and parse them to json

Data Engineering

Architecture Overview

Overview dataengineeringdiemo/dataengarchitecture.png

Data Structure of diemo jsons

  • EVSEStatuses
    • OperatorID
    • Operatorname
    • EVSEStatusRecord
      • EVSEID
      • EVSEStatus

Python and SQL part

For parsing the 48'000 json files in 5 minutes resolution for 6 months we used python scripts. We had to implement various exceptions because of empty jsons.

First we tried looping everything into csv, which did not perform as fast as we would like. We then tried Apache Feather as a data transfer format but the data storage speed wasn't the problem. The next try was a sqlite database which works fine and was an okay solution for the hackathon. If the project would go live, we would recommend a database server preferably in the cloud, to get the inital data loading done quick. The dataload still takes over 10 hours and is not very efficient.

SQL Queries

The first query is about getting an overlook over all the EV-Charging points, the different operators.

Visualisation ideas

public ev charging stations

  • snapshot for specific time (occupied, available) on a map
  • top 3 utilised stations for each canton on a map
  • occupation ratio per station on a map
  • time-profile clusters --> which stations have the same time-profile
  • time-profile in city centers, countryside and touristic regions
  • aggregated occupation over time of a day/week for all stations
  • occupation over time of a day/week for a selected station
  • typically duration of a charging process on a map

Analyses

Charging points utilization

Features analysis:

extraTreesRegressor

Legend:

1 | Grosszentren

2 | Nebenzentren der Grosszentren

3 | Gürtel der Grosszentren

4 | Mittelzentren

5 | Gürtel der Mittelzentren

6 | Kleinzentren

7 | Periurbane ländliche Gemeinden

8 | Agrargemeinden

9 | Touristische Gemeinden

Occupied ration distribution:

occupied_ratio_distribution

Weekend VS weekdays behaviour for private customers: hourly consumption:

hourly_consumption

Example of behaviour differences between two private customers: Distribution of the percentage of the whole battery that is charged.

percentage_of_max_charge_1

percentage_of_max_charge_2

Load curve for private customers:

ecars_load_curve

Overall energy consumption by private e-cars. This also show the adoption curve. The red zone corresponds to COVID time.

total_consumption

This content is a preview from an external site.
 

Edited

4 years ago ~ Benedikt

Joined the team

4 years ago ~ Benedikt

Edited

4 years ago ~ davidsuter

Event finish

Joined the team

4 years ago ~ Pradip

Edited

4 years ago ~ davidsuter

Joined the team

4 years ago ~ XavierBays

Edited

4 years ago ~ davidsuter

Joined the team

4 years ago ~ davidsuter

Start

Edited

4 years ago ~ aselviar

Joined the team

4 years ago ~ aselviar

Edited

4 years ago ~ nikki_bhler

Joined the team

4 years ago ~ nikki_bhler

Challenge shared
Tap here to review.

4 years ago ~ nikki_bhler
 
Contributed 4 years ago by nikki_bhler for Energy Hackdays 2020
All attendees, sponsors, partners, volunteers and staff at our hackathon are required to agree with the Hack Code of Conduct. Organisers will enforce this code throughout the event. We expect cooperation from all participants to ensure a safe environment for everybody. For more details on how the event is run, see the Guidelines on our wiki.

Creative Commons LicenceThe contents of this website, unless otherwise stated, are licensed under a Creative Commons Attribution 4.0 International License.