Edited (version 15)
Responsible News Recommender Systems
Wie kann man ein transparentes System bauen, das plattformübergreifend automatisierte und/oder personalisierte Artikel-Empfehlungen macht?
Die digitale Transformation hat sich sowohl auf die Nachfrage und Nutzung von Nachrichten als auch auf die Produktion und Verbreitung von Nachrichten tiefgreifend ausgewirkt: die Nutzer*innen sind mit einer immer größeren Auswahl an Medien und Informationsquellen konfrontiert und konsumieren Nachrichten zunehmend online, z.B. über soziale Medien.
Auf solchen Plattformen werden Inhalte zunehmend über Algorithmen automatisiert und personalisiert vorgeschlagen. Klassische Medienorganisationen spielen zwar immer noch eine zentrale Rolle, gerade auch in der Schweiz. Sie sind aber mit einer sinkenden Zahlungs-Bereitschaft der Nutzer*innen, sinkenden Werbeeinnahmen und einem verschärften Wettbewerb um Aufmerksamkeit konfrontiert. Um mit diesen Veränderungen mithalten zu können, experimentieren auch klassische News-Medien u.a. zunehmend mit algorithmischen Nachrichtenempfehlungssystemen.
Allerdings ist die Entwicklung guter Empfehlungssysteme teuer, aufwendig und kompliziert. Deshalb wir heute häufig auf Topic Similarity und vor allem auf Popularität gesetzt. Was bleibt auf der Strecke, wenn wir uns auf popularitätsbasierte Empfehlungssysteme konzentrieren? Welche Kategorien, z. B. Themen, Regionen, Akteure, Formate usw., sind über- oder unterrepräsentiert? Was müsste in einem diversitätsmaximierenden Recommender gepusht werden? z.B. welche Kategorien, z.B. Themen, Regionen, Akteure, Formate etc. Und kann dies auf transparente Weise geschehen, z..B. indem man aufzeigt, warum etwas empfohlen wird?
Event finish
Joined the team
Start
Joined the team
Challenge shared
Tap here to review.