07

RestructFeedback

Use AI for the evaluation of consultation procedures

7

⛶  Fullscreen ↓  Download

Pitch: 📎 GovHack 23.03_V1.pdf

The "Restruct Feedback" Hackathon challenge addresses a critical issue that arises during the draft legislation consultation process - unstructured text responses. Stakeholders are typically invited to provide feedback on draft legislation, which can result in an overwhelming number of responses that are disorganized and difficult to analyze. This challenge aims to streamline the process by creating a workflow that efficiently and effectively structures and categorizes feedback. This, in turn, will help the federal administration to understand and act on feedback quickly, reducing the time-consuming efforts involved in analyzing unstructured responses.

To achieve this, the proposed workflow involves using the ChatGPT API to analyze the sentiment of each response and categorize them based on the organization and summary of the main points. ChatGPT is a natural language processing tool developed by OpenAI that can understand and analyze language at an advanced level. By leveraging its capabilities, participants in the challenge can create a system that can effectively analyze and categorize unstructured text responses, making it easier for the federal administration to identify and address critical issues in the draft legislation.

Overall, the "Restruct Feedback" Hackathon challenge aims to simplify and streamline the draft legislation consultation process. By creating an efficient workflow that structures and categorizes unstructured text responses using the ChatGPT API, the federal administration can quickly understand and act on feedback, leading to more effective legislation development.

Organization: BK Federal Chancellery & Others

govtechhack23-RestructFeedback

Resources

Domain

OpenAI

This content is a preview from an external site.
 

Edited (version 41)

1 year ago ~ delixfe

Share

Repository updated

1 year ago ~ loleg

Event finish

Edited (version 33)

1 year ago ~ Timothy

Research

Edited (version 31)

1 year ago ~ Timothy

backend: toward mass processing

backend: iterate over data submission text files

styling

Edited (version 29)

1 year ago ~ Timothy

Research

Edited (version 27)

1 year ago ~ Timothy

Added Stadt Bern (@philippemeyer5)

Edited (version 25)

1 year ago ~ Timothy

Research

The website programmed by Michael Luggen has some additional AI generated content now:

https://l00mi.github.io/govtechhack23-RestructFeedback/frontend/index.html

1 year ago ~ Philippemeyer

SGV added (@philippemeyer5)

Added KT Obwalden, Jura (@philippemeyer5)

Edited (version 21)

1 year ago ~ Timothy

Research

Edited (version 19)

1 year ago ~ Timothy

Kanton Luzern und Testkanton added (@philippemeyer5)

Added Summary Bern (@philippemeyer5)

Added Summary Hauptstadtregion Schweiz (@philippemeyer5)

Added SGB

With summary and sentiment. (@philippemeyer5)

Added Hauptstadtregion Schweiz

Hope this works, first time working in json. (@philippemeyer5)

renamed directory (@vazpe)

moved README.md (@vazpe)

moved files to a subfolder (@vazpe)

Create README.md (@vazpe)

Joined the team

1 year ago ~ Philippemeyer

Research

Add files via upload (@vazpe)

add folder structure for eid

Joined the team

1 year ago ~ Timothy

Research

text only

remove unused files

Add files via upload

backend: more iterations and then stuck

This model's maximum context length is 4097 tokens. However, your messages resulted in 5088 tokens.

Add files via upload

Create .gitkeep

backend: more test iterations

add another resource

add consultation as text doc

added consultation docs and results to data

refactor data directory structure

add more resources

add more resources links to READMEs

backend: refactoring

add .env-template

replace ':' with '__' in data

Delete Arbeitgeberverband_20210121.msg (@vazpe)

Delete VernehmlassungKtGenfkeineBemerkung_20210226.msg (@vazpe)

Start

 
Alle Teilnehmer*innen, Sponsor, Partner, Freiwilligen und Mitarbeiter*innen unseres Hackathons sind verpflichtet, dem Hack Code of Conduct zuzustimmen. Die Organisatoren werden diesen Kodex während der gesamten Veranstaltung durchsetzen. Wir erwarten die Zusammenarbeit aller Teilnehmer*innen, um eine sichere Umgebung für alle zu gewährleisten. Mehr Details befinden sich in die GovTech Hackathon Guidelines.

Tous les participant-es, sponsors, partenaires, bénévoles et collaborateurs/collaboratrices de notre hackathon sont tenus d'accepter le Hack Code of Conduct. Les organisateurs feront appliquer ce code tout au long de l'événement. Nous attendons de tous les participants qu'ils coopèrent afin de garantir un environnement sûr pour tous. Pour plus de détails, veuillez consulter les Guidelines du GovTech Hackathon.

Creative Commons LicenceDie Inhalte dieser Website stehen, sofern nicht anders angegeben, unter einer Creative Commons Attribution 4.0 International License | Le contenu de ce site web est, sauf indication contraire, sous licence Creative Commons Attribution 4.0 International.